INTRODUCTION

The Monroe TRADER II is a versatile investment tool designed to provide a simplified method for computing bonds and other financial instruments. The fixed income computations included in the TRADER II provide fixed income professionals and investors the capability of performing basic trading and investment calculations.

TRADER II groups security instruments into 6 general categories.

Municipal, Corporate, Agency Bonds 0
U.S. Government Bonds 1

Municipal Notes 2
Actual 360 Notes 3
Actual 365 Notes 4
Treasury Bills, Discount Securities 5
Stepped Coupon Bonds 6

Type of Security

Security Code

TRADER II also contains more sophisticated fixed income computations, such as after tax calculations, duration, production analysis, average life and volatility measures which enhance the capabilities of the investment decision maker.

This manual provides an introduction to using the TRADER II as well as example problems. General operating instructions are provided for entering dates, prices and correcting errors. Also, detailed instructions are given for each function key.

GENERAL ENTRIES

NUMBERS

Numbers are keyed in as written using the decimal point key to define the position of the decimal point in the number, if any. The decimal point key is not necessary for numbers without a fractional part.

CHG SIGN is used to make a postive number negative, or a negative number positive.

DATES

Dates are entered just like numbers, using the decimal point key to separate the month from the day-of-the-month:

$$
\text { Month - Enter } 1 \text { or } 2 \text { digits, not to exceed " } 12 \text { " for December. }
$$

Day - Enter 2 digits, not to exceed " 31 ". If the day if from the first to the ninth (only one digit), enter a leading zero to fill in the first digit.

Year - Enter 4 digits, the century and the year.
or

- Enter 2 digits, the last two digits fo the year. When the century digits are not entered, TRADER II assumes the date is a valid date between January 1, 1970 and December 31, 2069.

For example, enter the number of the month, a decimal point, a "two digit" day and the last "two digits" of the year. "Two digit" means that the day and year must take up two pleaces. If the day or year is less than 10 , add a leading zero.

June 4, 1987 is entered as 6.0487
Pressing any key with the word date on it causes the date to be stored, according to the key depressed. TRADER II displays it with a message indicating the key pressed and punctuates the date in a conventional format.

EXAMPLE: June 24, 1987

ENTER	PRESS	RESULTS DISPLAYED
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

EXAMPLE: Oct. 1, 2000

ENTER	PRESS	RESULTS DISPLAYED	
10.0100	MAT DATE END	Maturity Date Sun.	10-01-2000

Remember, when entering a date without a century, the TRADER II assumes a valid date between January 1, 1970 and December 31, 2069. If you want to use a date not in this range, include the century. January 1, 2070 may be entered as 1.012070 .

EXAMPLE: Jan. 1, 2070

ENTER	PRESS	RESULTS DISPLAYED	
1.012070	MAT	Maturity Date Wed. 01-01-2070	
	DATE		

In order to provide consistency in security and date calculations, some guidelines must be followed when entering dates. These are:

The TRADER II will not accept dates which do not exist on an actual calendar. Incorrect entries will not be stored and the date 00-00-0000 will display.

- The TRADER II will never allow a security calculation without first entering a settlement date.
- Dates may be entered in any order but compared to each other when a calculation is performed. Dates, if necessary for a calculation, must be in the following order:

Issue/Dated Date $<=$ Settlement Date $<=$ Call Date $<=$ Date
Earliest Latest

- When the TRADER II is turned on all date registers are set to the fictitious date 00-00-0000. The presence of 00-00-0000 for a date is an indication that you do not want to use that date in a calculation.

For example, an Issue/Dated date of 00-00-0000 will not be used when calculating accrued interest.

PRICES

All prices are expressed in terms of Dollar Price (dollars per \$100.00 par value).
Prices are entered prior to using the following keys: TO YIELD, CALL PRICE, 32 ${ }^{\text {NDS }}$-to-decimal and decimal-to-(DISPLAY), 32NDS

If you enter a price in $32^{\text {nds }}$, press the $32^{\text {NDS }}$ key to convert it to a decimal before using it in the calculation. Depending upon which key is pressed, the TRADER II responds with a message or does a calculation.

STATUS MODE

The CODE, CALL/MATURITY, and COUPONS ER YEAR keys are considered to set modes of operation for keys which perform calculations. The "status" of all the modes is continuously displayed on line 1 of th edisplay. Each mode is defined in the Description of Keys section and illustrated in the example calculations.

The following is a typical example of the mode settings:

FED/MUNI SWITCH

This switch controls the number of decimal places of price results in Security Codes 0, 2, 3, 4, and 6 . Prices are rounded to 6 places in the FED position and truncated to 3 places in MUNI. Security Code 1 and 5 prices are calculated to 6 and 7 decimal places respectively.

CORRECTIONS \& ERROR MESSAGES

If an error is made when keying a number or date, the TRADER II will display a message. For example, if an invalid security code is entered (using the CODE key) the message Invalid Code, will be displayed. The error message need not be cleared. Just continue, by entering the correct number. An invalid date entry will result in a date of 00-00-0000. Whenever possible, the TRADER II will indicate which entry is incorrect refer to Appendix C for a complete list of error conditions.

If an error is detected before an entry is complete, press the C/CE key and enter the number again.

OVERFLOW AND UNDERFLOW

Calculation results which are too large (overflow) or small (underflow) will cause the number to be displayed in a special format.

Numbers have an internal capacity of fourteen digits (14) with a floating decimal point. When the decimal point is greater than the maximum number of digits, TRADER II displays as $1.234567890123+14$ which represents the actual number $123,456,789,012,340$. In other words, the 14 most significant digits of the result will be displayed along with an $\mathrm{E}+n n$ or $\mathrm{E}-n n$ indicating the placement of the decimal. In the example above, the acutal number was obtained by moving the decimal point to the right 14 digits. If $\mathrm{E}-n n$ is displayed, move the decimal point to the left $n n$ digits. Overflow will be displayed to indicate an error.

DESCRIPTION OF KEYS

DISPLAY \quad This key is used with the other keys to display the current values stored in the TRADER II. The result of pressing the DISPLAY key, if any, will be explained as each key is defined below.

C/CE (Clear/Clear Entry) When an entry is not being made, single depression of C/CE clears any pending arithmetic sequence in progress, any constant, as well as the entry disply, allowing you to start the calculation over. This may be referred to as the clear function.

During a numeric entry, single depression of this key clears the display and allows you to re-enter without disturbing the calculation in progress. This may be referred to as the clear entry function.

A double depression (two consecutive depressions) of C/CE at any time executes the clear function.

CODE The entry of this key determines the formula and day count basis used in subsequent calculations. Refer to Appendix B for a more complete list of securities and their day count basis. TRADER II groups security instruments into 6 general categories.

Type of Ssecurity	Security Code	
Municipal, Corporate, Agency Bonds	0	PER 30/360
U.S. Government Bonds	1	PER ACT/ACT
Municipal Noted	2	MAT 30/360
Actual 360 Notes	3	MAT ACT/360
Actual 365 Notes	4	MAT ACT/365
Treasury Bills, Discount Securities	5	DISC ACT/360
Stepped Coupon Bonds	6	STEP 30/360

Each category is based on:

1) Interest Classification - method and timing of interest payments
a) PER - Periodic Coupon
b) MAT - At Maturity
c) DISC - Discounted
d) STEP - Periodic with two coupon periods
2) The calendar - method used to count the number of days between two dates.
a) $30 / 360 \quad-30$ days in each month; 360 days per year
b) ACT/ACT -Actual days in each month; Actual days per year
c) ACT/365 -Actual days in each month; 365 days per year
d) ACT/360 -Actual days in each month; 360 days per year
3) Industry Rules
a) Municipal Securities Rulemaking Board
b) National Association of Securities Dealers

CALL/ Selects the calculation mode of subsequent calculations. This key toggles between MATURITY the following three modes:

1. MATURITY - selects calculations to maturity date only.
2. CALL - selects calculations to call date only
3. CALL+MAT - selects calculations to call and to maturiyt.

When both values are calculated, they are displayed side-by-side (Call on the left and Maturity on the right), the TRADER II retains the lower of the two for use in subsequent calculations.

The mode of the CALL/MATURITY key may be set at any time before a price or yield calculation.

COUPONS If a number entry is made before pressing this key, it changes the frequency of coupon PER YEAR payments for Security Codes 0, 1, and 6; and compound periods per year for the Compound Interest/Annuity functions.

ENTRY	DISPLAY STATUS		MEANING
1	ANNL		Annual Coupons
2	SEMI		Semi-Annual Coupons
4	QTR		Quarterly Coupons
12	MNTH		Monthly Coupons
Any other number	SEMI		Semi-Annual Coupons

ISSUE/ Accepts the issue date or dated date. An issue date is required in Security Codes 2, 3, DATED and 4. The dated date is used to calculate accrued coupon interest in Codes 0, 1, and 6.

SETTLEMENT Stores the settlement date, using the standard date format (Refer to General Entries DATE section), fo rall securities calculations. DISPLAY, SETTLEMENT DATE displays the most recent entry.

COUPON Accepts a coupon rate, as a percentage, on a bond, the interest rate on a note, or the interest rate for Compound Interest/Annuity functions. DISPLAY, COUPON displays the most recent entry.
$1^{\text {sT }}$ COUPON Stores the $1^{\text {st }}$ coupon date, using the standard date format. The $1^{\text {st }}$ coupon date is used
DATE to determine if an "odd" coupon period applies to Code 0 and 1 securities when computing price/yield. DISPLAY, $1^{\text {ST }}$ COUPON DATE displays the most recent entry.

MAT Accepts the maturity date of a security using the standard date format. DISPLAY, MAT
DATE DATE END display the most recent entry.
END
TO PRICE Accepts a yield, such as 8.125 , and calculates the price of a security. DISPLAY, TO PRICE displays the most recent price.
$32^{\text {NDS }} \quad$ Accepts a value in dollars and $32^{\text {nds }}$ and converts to decimal dollars. For example, for 104 2/32, enter 104.02. The third and fourth decimal positions may be a " 5 " for an additional $64^{\text {th }}$, a " 35 " for $1 / 128$ or a " 75 " for $3 / 128$. For Example:

FRACTIONAL PRICE		ENTER
$1001 / 32$	100.01	DISPLAY
$1001 / 32+1 / 64$	100.015	100.03125
$1001 / 32+1 / 128$	100.0125	100.046875
$1001 / 32+3 / 128$	100.0175	100.0390625
		100.0546875

DISPLAY, $32^{\text {NDS }}$ converts dollars as a decimal to dollars and $32^{\text {nds }}$.
TO YIELD Stores the entry of dollar price and calculates the yield of a security. DISPLAY, TO YIELD diplays the last yield entered or calculated and the equivalent yield according to the following table:

COUPONS PER YEAR

1 (ANNL)
2 (SEMI)
4 (QTR)
12 (MTH)

EQUIVALENT YIELD
SEMI-ANNUAL
ANNUAL
SEMI-ANNUAL
SEMI-ANNUAL

NOTE: For Treasury Bialls, Security Code 5, this key calculates the discount rate and displays the effective (coupon equivalent) yield.

CURR	Pressing this key computes the current yield for a security after a price o yield calculation.
CALL	Accepts the call date using the standard date format (Refer to General Entries section).
DATE	DISPLAY, CALL DATE BEGIN displays the most recent entry.

CALL Accepts a call price. DISPLAY, CALL PRICE displays the most recent entry. PRICE

CONV	Stores the second coupon rate, as a percentage, for computing a Code 6 securities (Step
COUPON	Coupon). DISPLAY, CONV COUPON displays the most recent entry.

CONV Stores the conversion date, using the standard date format. The conversion date
DATE determines when the conversion coupon rate is applied to Code 6 security calculations. DISPLAY, CONV DATE displays the most recent entry.

CONC Accepts a concession and deducts it from dollar price. If the price is 104.375 and the concession is .25 , the response will be 104.125. DISPLAY, CONC displays the most recent entry. The concession amount is erased after any price or yield calculation.

NOTE: Concession affects the dollar price only, it does not recalculate a new yield. If yield to "price less concession" is desired simply press TO YIELD when "Price less Conc" is in the display.

EXT	Accepts the entry of a quantity of securities, per thousand face value, (or uses previously stored number) to compute extended price less concession (principal amount) and accrued interest.
$\begin{aligned} & \text { DISPLAY, } \\ & \text { EXT } \end{aligned}$	Accepts the entry of a quantity of securities, per thousand face value, (or uses previously stored number) to compute net amount (extended total).
TAX RATE	Accepts income tax rate and capital gains rate, as percentages, to be used in all the after-tax calculators. Each percentage is two digits, separated by a decimal point. DISPLAY, TAX RATE displays the most recent entries.
AFTER TAX	Computes an after-tax yield using the previously calculated (price and yield) values in conjunction income and capital gains tax rates. DISPLAY, AFTER TAX performs after-tax-yield to price calculation.
DISPLAY, AFTER TAX	(After-tax-yield to price) Accepts the after-tax-yield and calculates before-tax dollar price for a given tax rate or rates and a specific after-tax yield. Enter the after-tax yield and depress DISPLAY, AFTER TAX.
DUR	Calculates the duration and modified duration of coupon security (Security Codes 0, 1, and 6).
DISPLAY DUR	Calculates the duration and modified duration of a coupon security without accrued interest.
VAL	Accepts the number of basis points (up to 99), and calculates the difference in dollar price, between the last entered (or calculated) price and the dollar price at the yield plus the entered basis points. If no entry is made, this key automatically assumes 5 basis points for codes 0,1 , and 6 ; adds 1 basis point to the discount rate for Code 5.
$\begin{aligned} & \text { DISPLAY, } \\ & \text { VAL } \end{aligned}$	Accepts the number of $32^{\text {nds }}$, and calculates the difference in basis points between currently entered (or calculated) yield and the yield at the dollar price plus the entered $32^{\text {nds }}$ (thirty second of a point). If no entry is made, this key sequence automatically assumes $1 / 32^{\text {nd }}$ for all security codes.
N	Accepts a total number of compounding periods; or pressing this key without a number entry, calculates the total number of periods. This number can represent days, weeks, months or any other tie unit, but always corresponds to the number of COUPONS PER YEAR entry. For example, if COUPONS PER YEAR is set to 2 , then the total number of compounding periods for five years is 10. DISPLAY, \mathbf{N} will display the most recent entry stored.
PRESENT VALUE	Accepts a present value amount; or pressing this key without a number entry, calculates the present value. a present value can be calculated for a future value and/or the resent value of a series for future payments. DISPLAY, PRESENT VALUE will display the most recent entry stored.

FUTURE	Accepts a future value amount; or pressing this key without a number entry, calculates the future value. A future value can be calculated for a present value and/or the compound value of a series of prior payments, DISPLAY, FUTURE VALUE will display the most recent entry stored.
PAYMENT	Accepts a periodic payment amount; or pressing this key without a number entry, calculates a periodic payment amount. DISPLAY, PAYMENT will display the most recent entry stored.
BEGIN	This key initializes the production (PROD) or average life (AVG LIFE) calculation sequences. If BEGIN is followed by a PROD key, the issue memory is erased and ready for new entries. if the BEGIN key is followed by the AVG LIFE key the Average Life summation is erased.
	Pressing BEGIN and the ADD ISSUE or STR BOND key erases all of the securities stored in the specified memory area.
AVG	This key, preceded by BEGIN, clears the average life summary and starts the average life calcualtion sequence; enters the number of securities retired per period (sinkers) into the average life computation.
PROD	This key, preceded by BEGIN, clears the issue memory and is ready for new entries.
BEGIN, PROD starts the production calcualtion sequence.	

SEQUENCE \# PRODUCTION SUMMARY COMMENT

$0 . \quad$ Total Par

1. Bond Years
2. Average Coupon
3. Average Interest
4. Total Coupon
5. Average Price
6. Total Extension
7. Total Principal
8. Average Redemption
9. Average Yield
10. Average Current Yield
11. Annual Income
12. Average Duration
13. Total Accrued Interest
14. Gross Profit

Dollar Amount

Weighted by Par
Weighted by Bond Years
Coupon Interest for Life of Bonds
Weighted by Par
Extended Price Plus Accrued Interest
Extended Price
Decimal Years and Date
Weighted by Par
Weighted by Par
Current Annual Coupon Interest
Weighted by par

Redemption Value + Total Interest - Cost

STR	Stores any security currently in working memory into a specific bond memory location according to the number (1-50) entered prior to pressing the key. If no storage location is specified, the TRADER II will automatically store the bond into the next available location.		
	Storing a bond in location 1 will erase any bond previously stored but does not affect the bonds stored in locations 2 through 50 .		
DISPLAY,	Recalls a security to working memory from a specific bond memory according to the number (1-50) entered prior to pressing the key.		
STR			
BOND		\quad	Stores the security currently in working memory into a specific issue memory location
:---			
ADD			
ISSUE			
according to the number (1-50) entered prior to pressing the key. If no storage location is			
specified, the TRADER II will automatically store the bond into the next available location.			

SECURITY CODE O

Security Code 0 calculates Municipal, Corporate, and Federal Agency Bonds as well as any security which pays periodic interest on a 30/360 (30 day month/360 day year) calendar. Refer to Appendix B for a more complete list of securities and the day count basis.

PRICE AND YIELD TO MATURITY

EXAMPLE: A 8.5\% Municipal Bond maturing on April 9, 11996 is sold to yield 9\%. Find the dollar price and the current yield.

ENTER	PRESS	RESULTS DISPLAYED
0	CODE	Security Code 0
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-87

To FED/MUNI switch and status line should be set as follows for this example:
FED/MUNI SWITCH to MUNI

> C=0 PER 30/360 SEMI 06-24-87 MATURITY

| ENTER | PRESS | RESULTS DISPLAYED |
| :--- | :--- | :--- | :--- |
| 8.5 | COUPON | Coupon Rate 8.500\% |
| 4.0996 | MAT
 DATE | Maturity Date Tue. 04-09-1996 |
| | END | |
| 9 | TO | Price 96.983(M) |
| | PRICE | Current Yield 8.764\% |

The same bond is bought at a price of 96.5 . What is the yield to maturity?

ENTER	PRESS	RESULTS DISPLAYED
96.5	TO	Yield $9.083 \%(\mathrm{M})$

NOTE: Since the settlement date, maturity date and coupon had already been stored, they need not be re-entered.

The maturity date in the previous example should have been April 15, 1996, not April 9, 1996. Recalculate the yield.

ENTER	PRESS		RESULTS DISPLAYED	
4.1596	MAT			
	DATE			
	END		Maturity Date Mon.	

Since the dollar price is already stored, there is no need to re-enter. The DISPLAY key together with the TO PRICE key will recall the previous dollar price.

ENTER	PRESS	RESULTS DISPLAYED
	DISPLAY,	Price 96.500
	TO	
	PRICE	
	TO	Yield $9.082 \%(M)$

CALLABLE BONDS

For bonds with a call option, you must enter a call price and call date using the CALL PRICE and CALL DATE BEGIN keys (in any order).

Press the CALL/MATURITY key, until CALL is displayed, this causes the TRADER II to calculate "to call" only; maturity date is ignored.

If the CALL/MATURITY key is in the CALL+MAT mode, computing a price or yield calculates both "to call" and "to maturity", both values are displayed simultaneously, the "to call" on the left, and the "to maturity" on the right. Only the lower of the two values is retained for further calculations.

EXAMPLE: A 6\% Municipal Bond due April 25, 2016 is sold to yield 5.5%. It is callable on April 2, 1996 at a price of 102.50 . Settlement date is June 24, 1987. Calculate price to call and to maturity.

ENTER	PRESS	RESULTS DISPLAYED
	CODE	Security Code 0.
6.2487	SETTLEMENT	Settlement Date Wed. 06-24-87
	DATE	

The status lien should be set as follows for this example:

C=0 PER 30/360 SEMI 06-24-87 CALL+MAT

ENTER	PRESS	RESULTS DISPLAYED	
0	COUPON	Coupon Rate 6.00\%	
4.2516	MAT DATE END	Maturity Date Mon.	04-25-2016
4.2596	CALL DATE BEGIN	Call Date Thur.	04-25-1996
102.5	CALL PRICE	Call Price 102.5	
5.5	TO PRICE	Price 105.001 (C) 107.180 (M)	

Since the price "to call" is lower, that value is stored so you may extend the trade (See Extensions). Verify which value is stored by depressing DISPLAY, TO PRICE.

ENTER PRESS RESULTS DISPLAYED

DISPLAY, Price 105.001
TO
PRICE
Find the yield "to call" and "to maturity" if the price is 104.25.

ENTER	PRESS	RESULTS DISPLAYED	
104.25	TO	Yield 5.605% (C)	5.697% (M)
	YIELD		
	DISPLAY,	Yield 5.605%	$.684 \%$ ANNL Equiv
	TO		

YIELD TO INVESTOR

The CALL/MATURITY mode can also be used to calculate "yield to the investor" for a bond currently held. To calculate the yield to investor, treat the bond as if it were called. Enter the market price on the CALL PRICE key, and settlement date on the CALL DATE BEGIN key.

EXAMPLE: A 5.5% agency bond was purchased on July 12, 1971 for 81.75 and is currently selling for 91.645 . What is the investors yield, if the bond is sold on June 24, 1987.

ENTER	PRESS	RESULTS DISPLAYED
0	CODE	Security Code 0.
7.1271	SETTLEMENT DATE	Settlement Date Mon. 07-12-71

The status line should be set as follows for this example:

C=0 PER 30/360 SEMI 07-12-71 CALL

ENTER	PRESS	RESULTS DISPLAYED	
5.5	COUPON	Coupon Rate 5.500\%	
6.2487	CALL DATE BEGIN	Call Date Wed.	06-24-87
91.645	CALL PRICE	Call Price 91.645	
81.75	$\begin{aligned} & \text { TO } \\ & \text { YIELD } \end{aligned}$	Yield 7.146\% (C)	

BOND EXTENSIONS

After a price or yeld calculation, securities may be extended, taking into account a concession, if any. The extension calculates the principal and accrued interest amounts as well as the net amount.

To calcualte bond extension, do a price or yield calculation in the normal way. If there is a concession, enter it in dollars per hundred par value and press CONC. The price less concession is displayed. With or without the concession, enter the number of bonds (per thousand) and proceed with one or both of the following functions:

KEY FUNCTION

EXT Extended price (less concession, if any) and accrued interest.
DISPLAY/EXT Extended net amount (extended price less concession plus accrued interest).

Once the number of bonds has been entered using one of the above methods, that number of bonds remain stored and need not be re-entered to proceed to another extension. The number of price or yield is calculated.

EXAMPLE: A 6% Municipal Bond maturing on October 25, 1990 at a price of 90 . Find the yield, the extended principal, accrued interest and net amount for 100 bonds sold on June 24, 1987.

ENTER	PRESS	RESULTS DISPLAYED
0	CODE	Security Code 0.
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

Set the FED/MUNI switch and status line as follows:

		C=0 PER 30/360 SEMI 06-24-87 MAT
ENTER	PRESS	RESULTS DISPLAYED
6	COUPON	Coupon Rate 6.000\%
10.2590	MAT DATE END	Maturity Date Thur. 10-25-1990
90	$\begin{aligned} & \text { TO } \\ & \text { YIELD } \end{aligned}$	Yield 9.566\% (M)

Enter the number of bonds and press EXT
ENTER PRESS RESULTS DISPLAYED
100 EXT Prtn 90,000.00 Int 983.33
To see the extended principal plus the accrued interest:
ENTER PRESS RESULTS DISPLAYED
DISPLAY, \quad Net Amount 90,983.33
EXT
What is the accrued interest, for 2000 bonds?

ENTER	PRESS	RESULTS DISPLAYED	
200	EXT	Prtn $180,000.00 \mathrm{lnt} \quad 1,966.67$	

DATED BONDS

To calculate extensions for bonds which have an irregular first coupon (Dated Bonds), enter the dated date then press ISSUE/DATED. Then proceed in the normal manner as for regular bonds. The dated date may be entered at any time prior to performing the calculation for which is to be used. The dated date will remain stored until it is removed by entering $\mathbf{0}$ and pressing the ISSUE/DATED key.

EXAMPLE: Find the accrued interest for 10 Municipal Bonds dated January 15, 1987 and sold June 24, 1987. The coupon value is 8% the maturity date is June 1,1994 and the yield is 9.25%.

ENTER	PRESS	RESULTS DISPLAYED
0	CODE	Security Code 0.
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

Set the FED/MUNI switch and status line as follows:

C=0 PER 30/360 SEMI 06-24-87 MATURITY

ENTER	PRESS	RESULTS DISPLAYED	
1.1587	$\begin{aligned} & \text { ISSUE/ } \\ & \text { DATED } \end{aligned}$	Iss/Dated Date Thu.	01-15-1987
8	COUPON	Coupon Rate 8.000\%	
ENTER	PRESS	RESULTS DISPLAYED	
6.0194	MAT DATE END	Maturity Date Wed.	06-01-1994
9.25	TO PRICE	Price 93.693(M)	
10	EXT	Prin 9.369.30 Int 353.33	
	$\begin{aligned} & \text { DISPLAY, } \\ & \text { EXT } \end{aligned}$	Net Amount 9,722.63	

Clear the dated date:

ENTER	PRESS	RESULTS DISPLAYED	
	0.	Iss/Dated Date	$00-00-0000$
	ISSUE/		
	DATED		

AFTER-TAX CALCULATIONS

The TRADER II has the capability of calculating several after-tax functions.

- Before-tax price to After-tax yield
- Before-tax yield to After-tax yield
- After-tax yield to Before-tax price
- After-tax yield to Before-tax yield

These calculations are always based on either or both of two different tax rates, the income tax and capital gains rates. The TRADER II can be used to compute after-tax calculations for notes as well as bonds. After-tax yield calculations cannot be done for Treasury Bills. (Refer to Code 5 After-Tax Calculations.)

Before after-tax calculations can be performed, store the appropriate tax rates. The tax rates, like the coupon rate, are entered as percentages, each rate is a two digit number separated by a decimal point, and press TAX RATE.

Once entered, there is no need to re-enter the tax rate, unless the rate changes. To see the rates previously stored, press DISPLAY, TAX RATE.

After-tax calculations can be done for all securities, by the selection of the appropriate Security Code. In most cases, Municipal Bonds do not require an income tax rate. Just enter zero for the income tax rate.

Premium bonds and notes, in accordance with convention, are calculated using the tax rate for both the tax on interest and the tax on the capital loss.

AFTER-TAX YIELD

To determine the after-tax yield of a security, begin by performing a normal TO PRICE or TO YIELD calculation. When the proper tax rates are stored, press AFTER-TAX. (No entry is required, since all information needed for the calculation is already stored.) The after-tax yield is displayed.

EXAMPLE: A Corporate Bond with a 7% coupon is offered at a price of 92.625 . If matures on January 5 , 1992. What is the after-tax yield to a purchaser whose tax rate is 33% and capital gains is 28% ? The settlement date is June 24, 1987.

ENTER	PRESS	RESULTS DISPLAYED
0	CODE	Security Code 0.
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

Set the FED/MUNI switch and status line as follows:

		C=0 PER 30/360 SEMI 06-24-87 MATURITY
ENTER	PRESS	RESULTS DISPLAYED
7	COUPON	Coupon Rate 7.000\%
1.0592	MAT DATE END	Maturity Date Sun. 01-05-1992
33.28	$\begin{aligned} & \text { TAX } \\ & \text { RATE } \end{aligned}$	Inc Tax 33\% Cap Gains 28\%
92.625	$\begin{aligned} & \text { TO } \\ & \text { YIELD } \end{aligned}$	Yield 9.018\% (M)
	AFTER TAX	After-Tax Yield 6.179\%

Find the municipal equivalent after-tax yield for the bond above.

ENTER	PRESS	RESULTS DISPLAYED
0.28	TAX	Inc Tax 0\% Cap Gains 28\%
	RATE	
	AFTER	After-Tax Yield 8.617%

AFTER-TAX YIELD TO PRICE

To find the price which must be paid to obtain a desired after-tax yield (calculate the before-tax price), use the DISPLAY, AFTER-TAX keys. Price or yield does not have to be computed prior to calculating the before-tax price, unless in the CALL+MATURITY mode; in this case, the price or yield must be done first to determine whether the calculation is to call or to maturity. DISPLAY, AFTER-TAX always uses the values currently stored for a security and assumes the after-tax yield is entered in the display or is the last value displayed.

EXAMPLE: What price would you have to pay for the previous bond if you required an after-tax yield of 7.5% ?

ENTER	PRESS	RESULTS DISPLAY
33.28	TAX	Inc Tax 33\% Cap Ga
	RATE	
7.5	DISPLAY AFTER TAX	B-Tax Price 86.703

BEFORE-TAX YIELD FROM AFTER-TAX YIELD

You may want to calcualte the before-tax yield, if the bond is available at that after-tax price. With the price still in the display, simply press TO YIELD.

ENTER	PRESS	RESULTS DISPLAYED
	TO	Yield $10.786 \%(M)$

ZERO-COUPON BONDS

Zero Coupon or stripped coupon bonds can be calculated exactly as a normal coupon bond by entering a coupon interest rate of 0%.

EXAMPLE: Find the yield of a Zero Coupon Bond that matures on January 01, 1999 at a price of 24.90 on June 24, 1987.

ENTER	PRESS	RESULTS DISPLAYED
0	CODE	Security Code 0.
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

Set the FED/MUNI switch and status line as follows:

FED/MUNI SWITCH to MUNI

> C=0 PER 30/360 SEMI 06-24-87 MATURITY

ENTER	PRESS	RESULTS DISPLAYED	
0	COUPON		Coupon Rate 0.000\%

The same bond is callable on January 01, 1995 at a price of 65.811 . To find the yield to call:

ENTER	PRESS CALL/MAT	RESULTS DISPLAYED		
		C=0 PER 30/360	SEMI 06-24-87	CALL
1.0195	CALL DATE BEGIN	Call Date Sun.	01-01-1995	
65.811	CALL PRICE	Call Price 65.811		
	$\begin{aligned} & \text { DISPLAY } \\ & \text { TO } \\ & \text { PRICE } \end{aligned}$	Price 24.900		
	$\begin{aligned} & \text { TO } \\ & \text { YIELD } \end{aligned}$	Yield 13.352\% ©		

ANNUAL-COUPON AND EUROBONDS

Most domestic bonds are issued to pay coupon interest semi-annually. However, most Eurobonds, pay coupons on a annual basis.

EXAMPLE: Find yield to maturity for $\$ 25,000.00$ annual-coupon bond with a 7.5% coupon currently available at a 7% yield, maturing October 25, 1989.

ENTER	PRESS	RESULTS DISPLAYED
1	COUPONS PER YEAR	Coupons/Year 1
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

The status line should be as follows for this example:
C=0 PER 30/360 SEMI 06-24-87 MATURITY

ENTER	PRESS	RESULTS DISPLAYED	
7.5	COUPON	Coupon Rate 7.500\%	
10.2589	MAT DATE END	Maturity Date Wed.	10-25-1989
7	TO PRICE	Price 100.987 (M)	
25	EXT	Prin 25,246.75 Int	1,244.79
	$\begin{aligned} & \text { DISPLAY } \\ & \text { EXT } \end{aligned}$	Net Amount 26,491.54	
	$\begin{aligned} & \text { DISPLAY } \\ & \text { TO } \\ & \text { YIELD } \end{aligned}$	Yield 7.000\% (M)	6.882\% SEMI Equiv

DURATION

Duration is a measure of the timing of the cash flow (i.e., the interest payments and the principal repayment) to be received from a given coupon security. The duration of the security is equal to (a) the sum of the present values of each of the cash flows weighted by the time to receipt of each cash flow divided by (b) the total of the present values of the cash flows. The duration of a bond is used by many investors because it is a convenient way of combing the time elements of a security for coupons and term to maturity.

The modified duration is the duration (computed as above) divided by ($1+$ Yield/coupons per year).
TRADER II will compute the duration for any coupon security (Codes 0,1 and 6).
EXAMPLE: A 7.5\% Municipal Bond maturing on November 9, 1989 is sold to yield 8\%. Find the dollar price and duration of the security.

ENTER	PRESS	RESULTS DISPLAYED
0	CODE	Security Code 0.
6.2487	SETTLEMENT	Settlement Date Wed. 06-24-1987

Set the FED/MUNI switch and status line as follows:

FED/MUNI SWITCH to MUNI

> C=0 PER 30/360 SEMI 06-24-87 MATURITY

| ENTER | PRESS | RESULTS DISPLAYED |
| :--- | :--- | :--- | :--- |
| 7.5 | COUPON | Coupon Rate 7.500\% |
| 11.0989 | MAT
 DATE
 END | Maturity Date Thu. 11-09-1989 |
| 8 | TO | |
| | PRICE | Price $98.923(\mathrm{M})$ |
| | DUR | Duration 2.200 Mod 2.115 |

Here's some characteristics of Duration:

1. If the bond has coupons, the duration of the bond will always be less than the term.
2. If two bonds have the same maturity date, the bond with a larger coupon will have a shorter duration.
3. Generally, there is a positive relationship between term to maturity and duration. (Normally the longer the term to maturity, the longer the duration.)
4. In most cases, the higher the market yield, the lower the duration.
5. Zero or stripped coupon bonds will have a duration equal to the term to maturity.

VALUE OF A BASIS POINT

The VAL key provides two calculations which combine several TRADER II functions to obtain the movement of either price or yield. VAL calculates the difference in dollar price, if the yield moves by $.05 \%$ (Codes 0-4 and 6) or if the discount rate changes by $.01 \%$ for Code 5 . DISPLAY, VAL calculates the difference in yield in basis points if the price changes by $1 / 32^{\text {nd }}$ of a point.

The VAL key also allows you to enter other spread values.
VAL accepts number of basis points (up to 99), and calculates the difference in price, between the dollar price and the dollar price at the yield plus the entered basis point.

DISPLAY, VAL accepts the number of $32^{\text {nds }}$, and calculates the difference in basis points between the yield and the yield at the dollar price plus the entered $32^{\text {nds }}$ (thirty second of a point).

EXAMPLE: A 6.5\% Agency Bond maturing on November 24, 2010 is sold to yield 7.75%. Find the dollar price and compute the dollar movement if the yield changed by 5 basis points.

ENTER	PRESS	RESULTS DISPLAYED
0	CODE	Security Code 0.
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

Set the FED/MUNI switch and status line as follows:

FED/MUNI SWITCH to MUNI

> C=0 PER 30/360 SEMI 06-24-87 MATURITY

ENTER	PRESS	RESULTS DISPLAYED	
6.5	COUPON	Coupon Rate 6.500\%	
11.2410	MAT DATE END	Maturity Date Wed.	11-24-2010
7.75	TO PRICE	Price $86.580(\mathrm{M})$	
	VAL	VAL $.05=4.780$	

Now compute how much the yield will change if the bond moves $1 / 32$ of a point.

ENTER	PRESS	RESULTS DISPLAYED
	DISPLAY VAL	VAL $1 / 32^{\text {nd }} 0.30$ Basis Points

SECURITY CODE 1

Code 1 calculates Government Bonds as well as any coupon security which pays periodic interest on an Actual (Actual days in a month/actual days in a year) calendar. All of the calculations and options available in Code 0 can also be performed using Code 1. Refer to Appendix B for a more complete list of securities and the day count basis.

EXAMPLE: A 8.5\% Government Bond due on December 20, 1999 is sold at $1043 / 32$. Find the yield to maturity, current yield, and extended net amount for 100 bonds.

| ENTER | PRESS | RESULTS DISPLAYED |
| :--- | :--- | :--- | :--- |
| 1 | CODE | Security Code 1. |
| 2 | COUPONS
 PER YEAR | Coupons/Year 2. |
| 6.2487 | SETTLEMENT
 DATE | Settlement Date Wed. 06-24-87 |

The status line should be set as follows for this example:

		C=1 PER 30/360 SEMI 06-24-87 MATU
ENTER	PRESS	RESULTS DISPLAYED
8.5	COUPON	Coupon Rate 8.500\%
12.2099	MAT DATE END	Maturity Date Mon. 12-20-1999
104.03	$32^{\text {nds }}$	104.09375
	TO YIELD	Yield 7.976\% (M)
	CURR Yield	Current Yield 8.166\%
100	EXT	Prin 104,093.75 Int 92.90
	$\begin{aligned} & \text { DISPLAY } \\ & \text { CVT } \end{aligned}$	Net Amount 104,186.65

ODD COUPONS

Some bonds are issued with an :"odd first coupon". This is a bond for which there is more (or less) than one normal coupon period from issue date to the date of the first coupon payment. For example, a semiannual coupon is considered to be "short" if the first period is less than six months and "long" if more than a six month period. Traditionally, when settlement occurs during the odd period (before the first coupon payment), an odd coupon amount has been included in the invoice extension of accrued interest but not in the price and yield calculations. The TRADER II can include the odd coupon period when computing price, yield and accrued interest.

The following two graphics illustrate the long and short coupon periods:

Odd Long Coupon Period

Odd Short Coupon Period

Odd Coupon bonds are tested regularly by the U.S. Treasury and other Federal Agencies. These issuers consider the odd period when computing price and yield as well as when extending the accrued interest. For municipal securities, as required by MSRB, the odd period should not be considered when computing price and yield but should be when calculating the accrued interest. Corporates presently follow the accepted practice of municipals, however, a trend is starting whereby the Treasury method will be used.

PRICE AND YIELD TO MATURITY

The TRADER II will consider the odd coupon for price, yield and accrued interest calculations whenever the settlement dat is prior to the $1^{\text {st }}$ coupon date. If the odd coupon is not to be considered, enter a zero (0) and press the $1^{\text {st }}$ COUPON DATE key. This method allows the correct accrued interest to be computed from the issue/dated date but not in the price or yield calculation.

EXAMPLE: A Treasury Bond with an 8.5% coupon, due on March 1, 2001 is sold to yield 8.48% on May 29, 1987. Find the price to maturity and accrued interest for 100 bonds. The bonds were issued May 1, 1987 and pays the first coupon on March 1, 1988. (Settlement date occurs before the $1^{\text {st }}$ coupon.

ENTER	PRESS	RESULTS DISPLAYED
1	CODE	Security Code 1.
2	COUPON	
	PER YEAR	

The status line should be set as follows for this example:

C=1 PER ACT/ACTG SEMI 06-24-87 MATURITY

ENTER 5.0187	PRESS ISSUE/ DATED	RESULTS DISPLAYED
3.2987	SETTLEMENT DATE	Sss/Dated Fri. 05-01-1987

SECURITY CODES 2-4

Security Codes 2, 3 and 4 is used to calculate notes paying interest at maturity. Notes may be calculated based on three different day count basis according to the code entered:

CODE	DAY COUNT
2	$30 / 360$
3	Actual/360
4	Actual/365

Entries describing a note are the same for Security Code 0. The interest rate us entered using the coupon key and the issue date on the issue/dated key. The price is calculated to 6 or 3 places depending on the setting of the FED/MUNI switch. In MUNI mode three decimal places are calculated, in accordance with rules for municipal notes. The FED mode is used when six decimal places are required.

Refer to Appendix B for a more complete list of securities and the day count basis.
EXAMPLE: A Municipal Note (Coed $2-30 / 360$ calendar) is sold on May 8,1982 to yield 10.5% The issue date is May 1, 1987 and the interest rate is 11%. Maturity is on May 1, 1991. Calculate the price.

ENTER	PRESS	RESULTS DISPLAYED
2	CODE	Security Code 2.
6.2487	SETTTLEMENT DATE	Settlement Date Wed. 06-24-1987

Set the FED/MUNI switch and status line as follows:

FED/MUNI SWITCH to MUNI		C=2 MAT 30/360 SEMI 06-24-87 MATURITY
ENTER	PRESS	RESULTS DISPLAYED
5.0187	ISSUE/ DATED	Iss/Dated Date Fri. 05-01-1987
5.0191	MAT DATE END	Maturity Date Wed. 05-01-1991
11	COUPON	Coupon Rate 11.000\%
10.5	TO PRICE	Price 100.0-5 (M)

Calculate the yield of the previous note, if the price is 100.50

ENTER	PRESS	RESULTS DISPLAYED
100.5	TO YIELD	Yield 10.645%

NOTE EXTENSIONS

Extensions for these securities are done in exactly the same manner as for Code 0 securities, except the number of bonds entry prior to the extension is replaced with the face value is retained and does not have to be re-entered for subsequent extensions.

For example, calculate the extended principal, accrued interest and net amount of the note in the previous example.

| ENTER | PRESS | | RESULTS DISPLAYED | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 450 | EXT | Prin $452,2500.00 \quad \mathrm{lnt}$ | $7,287.50$ | |
| | DISPLAY, | | Net Amount $459,537.50$ | |
| | EXT | | | |

MATURE NOTES (CODES 2, 3 and 4)

To calculate interest on mature securities in Code 2,3 and 4 , simply enter the maturity date on both the MAT DATE END and SETTLEMENT DATE keys. Enter issue date and interest rate as usual, and use EXT to find the net interest.

EXAMPLE: A 500,000.00 certificate of deposit issued May 4, 1987, when sold on June 24, 1987, and matures on November 3, 1987, with interest at 5.25%. Calculate the total extended price, and the interest due at maturity.

ENTER	PRESS	RESULTS DISPLAYED
3	CODE	Security Code 3.
6.2487	SETTLEMENT	Settlement Date Wed. 06-24-1987 DATE Set the FED/MUNI switch and status line as

FED/MUNI SWITCH to FED

> C=3 MAT ACT/360 SEMI 06-24-87 MATURITY

Now compute the interest due at maturity.

ENTER	PRESS	RESULTS DISPLAYED	
	DISPLAY, MAT DATE END	Maturity Date Tue.	11-03-87
	SETTLEMENT DATE	Settlement Date Sat.	11-03-1987
	EXT	Prin 499,477.22 Int	13,343.75

SECURITY CODE 5

Security Code 5 is used to calculate Treasury Bills and other discount instruments, such as banker's acceptances, on an Actual/360 calendar. Refer to Appendix B for a more complete list of securities and the day count basis. Given the price, the discount rate is calculated. The bond equivalent yield is also available (DISPLAY, TO YIELD). In addition, the price and the total discount can be extended.

ESAMPLE: A Treasury Bill is sold on June 24, 1987 at a 7.8% discount. It matures on March 1, 1988. Calculate the price and effective yield.

ENTER	PRESS	RESULTS DISPLAYED
5	CODE	Security Code 5.
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

The status line should be set as follows for this example:

> C=5 DISC ACT/360 SEMI 06-24-87 MATURITY

ENTER	PRESS		RESULTS DISPLAYED
3.0188	MAT		Maturity Date Tue. 03-01-1988
	DATE		
	END		
7.8	TO	Price $94.5616667(M)$	

DISCOUNT EXTENSIONS

For discounted securities, EXT calculates the extended amounts of principal and discount interest; DISPLAY, EXT displays the extended par amount

ENTER	PRESS		RESULTS DISPLAYED			
250	EXT		Prin 236,404.17 Int	$13,595.83$		
	DISPLAY		Net Amount $250,000.00$			
	EXT					

After the price or discount rate calculation, the entered or calculated discount is not stored; DISPLAY, TO YIELD recalls the effective yield.

ENTER	PRESS	RESULTS DISPLAYED
	DISPLAY	Effective Yield 8.27%
	TO	
	YIELD	

CODE 5 AFTER-TAX CALCULATIONS

The TRADER II has the added capability of performing after-tax calculations in Security Code 5.
The basic operating procedures remain the same as in other Codes, however, the nature of discount securities changes the results obtained using the after-tax functions.

AFTER TAX DISCOUNT RATE

AFTER-TAX provides the after-tax discount rate (not yield); that is the effective discount rate after tax considerations.

BEFORE-TAX PRICE FROM AFTER-TAX DISCOUNT RATE

DISPLAY, AFTER-TAX accepts the entry of a desired after-tax discount rate (not yield), and calculates the before-tax discounted price which would be paid to obtain the entered after-tax discount rate.

EXAMPLE: Use the previous Treasury Bill example to perform the after-tax functions. With an income tax rate of 28%, find the price needed to obtain a 4% after-tax discount rate. Find the actual aftertax discount rate and effective yield for the bill as calculated.

ENTER	PRESS	RESULTS DISPLAYED
28	TAX RATE	Inc Tax 28\% Cap Gains 0\%
4	DISPLAY AFTER TAX	B-Tax Price 96.1265432

AFTER-TAX EFFECTIVE YIELD

For comparison to securities in other codes, the after-tax effective yield (coupon equivalent yield can be calculated by the following sequence.

ENTER	PRESS	RESULTS DISPLAYED
	AFTER After-Tax Yield 5.616% TAX	
	TO	Price $96.0844000(M)$
	PRICE	
	DISPLAY,	Effective Yield 5.879%
	TO	
	YIELD	

SECURITY CODE 6

Security Code 6 calculates stepped coupon bonds, as well as any security which has two coupon periods, wach with it's own coupon rate, and pays periodic interest on a 30/360 (30 day month/360 day year) calendar. Typical examples of stepped coupon instruments are: Growth and Income Securities and Capital Appreciation/Future Income Securities. These instruments function essentially as zero coupon securities for a period of time afte rissuance, then on a conversion date they begin to pay coupon interest semi-annually. The TRADER II can compute the price and yield of any security which contains two interest rate periods (Stepped coupons). The first coupon rate does not have to zero. For example, for the first 15 years, a security may have a coupon of 4.5% and then for the next 10 years a coupon of 9.5\%.

Enter the security just as in Code 0 with the additional entries of CONV DATE and CONV RATE. The conversion date must be a normal coupon date and is the date at which the conversion coupon rate takes effect.

EXAMPLE: A Capital Appreciation Bond maturing on November 1, 2010, pays no coupon until November 1, 2000, and then pays 9% semi-annually until maturity is sold to yield 8.75%. the cond is bought for settlement on June 24, 1987. Find the dollar price.

ENTER	PRESS	RESULTS DISPLAYED
6	CODE	Security Code 6.
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06-24-1987

Set the FED/MUNI switch and status line as follows:

FED/MUNI SWITCH to FED

> C=6 STEP 30/360 SEMI 06-24-87 MATURITY

ENTER	PRESS	RESULTS DISPLAYED	
0	COUPON	Coupon Rate 0.000\%	
11.0110	MAT DATE END	Maturity Date Mon.	11-01-2000
9	CONV COUPON	Conv. Rate 9.000\%	
11.0100	$\begin{aligned} & \text { CONV } \\ & \text { DATE } \end{aligned}$	Conv. Date Wed.	11-01-2000
8.75	$\begin{aligned} & \text { TO } \\ & \text { PRICE } \end{aligned}$	Price 32.392 (M)	

COMPOUND INTEREST/ANNUITY FUNCTIONS

The compound interest functions provide present value, future value, N (Number of Periods) and payment calculations. In all cases the annual interest rate is entered on the COUPON key and the number of compounding periods is entered on the COUPONS PER YEAR key. The Security Code and other status modes in the display have no meaning for the Compound Interest/Annuity functions.

FUTURE VALUE CALCULATION

What is the balance of a saving account, paying 6% annually - compounded monthly, at the end of 6 months. There is an initial balance of $\$ 1,000.00$ in the account.

ENTER	PRESS	RESULTS DISPLAYED				
6	COUPON	Coupon Rate 6.000\%	\quad	12	COUPONS	Coupons/Year 12.
:---	:---	:---				
	PER YEAR					
6	N	Number of Periods				
50	PAYMENT	Payment Amount 50.00				

ENTER	PRESS	RESULTS DISPLAYED
0	PRESENT VALUE	Present Value 0.00
	FUTURE VALUE	Future Value 303.78

Here is the payment schedule of the account over the 6 periods.
Note that the balance at the end of the first period is $\$ 50.00$. Interest accrues for the first period but is not credited to the account until after a complete compounding period. Such payments are called payments in arrears or ordinary annuities.

PERIOD		PAYMENT		
1				
2	$\$ 50.00$		$\$ 50.00$	
3	$\$ 50.00$		$\$ 100.25$	
4	$\$ 50.00$		$\$ 150.75$	$\$ 0.25$
4	$\$ 50.00$		$\$ 201.50$	$\$ 0.50$
5	$\$ 50.00$		$\$ 252.51$	$\$ 1.75$
6	$\$ 50.00$		$\$ 303.77$	$\$ 1.26$

The penny difference comes from the fact that the Compound Interest/Annuity functions are using maximum decimal place accuracy to calculate and rounds the final answer to obtain the ending balance.

EXAMPLE: Now combine the previous two examples, the present value of a saving account is $\$ 1,000.00$ and $\$ 50.00$ is deposited each month, what is the balance after six deposits? Since all the values (interest rate coupons per year, total number of periods and payment amount) are still stored from the previous example, just enter the PRESENT VAL amount and press the FUTURE VALUE key.

ENTER	PRESS	RESULTS DISPLAYED
1000	PRESENT	Present Value $1,000.00$
	VALUE	
	FUTURE VALUE	Future Value $1,334.15$

PRESENT VALUE CALCULATION

The Present Value calculates the initial amount required accumulating a Future Value. The present Value and Payment amounts are taken into account in the calculation.

EXAMPLE: What is the maximum amount that can be borrowed at 15% for 4 years, at payments of $\$ 150.00$ per month. In other words, what is the present value of the 48 payments (4 years $\times 12$) monthly payments.

ENTER	PRESS	RESULTS DISPLAYED
15	COUPON	Coupon Rate 15.999%

ENTER	PRESS	RESULTS DISPLAYED		
15	COUPON		\quad	Coupon Rate 15.000^\%
:---				
12		COUPONS		
:---	:---			
PER YEAR	\quad	Coupons/Year 12.		
:---	:---			
60	N			

The $\$ 118.95$ monthly payment is displayed with a minus sign to indicate computing a payment for a Present Value.

EXAMPLE: What semi-annual deposit is required to accumulate $\$ 50,000.00$ in 15 years at 8% compounded semi-annually? The account is opened with and initial deposit of $\$ 500.00$.

ENTER	PRESS	RESULTS DISPLAYED
9	COUPON	Coupon Rate 9.000\%
2	COUPONS PER YEAR	Componds/Year 2
30	N	Number of Periods 30
500	PRESENT VALUE	Present Value 500.00
50000	FUTURE VALUE	Future Value 50,000.00
	PAYMENT	Payment Amount 788.88

NUMBER OF PERIODS

The \mathbf{N} key calculates the number of payments to obtain a future value or the number of compound periods required for a present value to obtain a future value. (when computing Number of Periods the result is always displayed without a fraction, \mathbf{N} is not rounded in any way. In some cases, this will cause the number of payments to be one less than the actual number of periods.)

EXAMPLE: How many monthly deposits of $\$ 200.00$ are required to accumulate $\$ 20,00.00$ at 5.75% compounded monthly?

ENTER	PRESS	RESULTS DISPLAYED
5.75	COUPON	Coupon Rate 5.750\%
12	COUPONS PER YEAR	Coupons/Year 12.
0	PRESENT VALUE	Present Value 0.00
20000	FUTURE VALUE	Future Value 20,000.00
200	PAYMENT	Payment Amount 200.00
	N	Number of Periods 82

EXAMPLE: How many periods are required for a deposit of $\$ 5000.00$ to grow to $\$ 12,000.00$ at 7.5% compounded yearly?

ENTER	PRESS	RESULTS DISPLAYED	
7.5	COUPON		Coupon Rate 7.50%
1	COUPONS PER YEAR	Coupons/Year 1	
5000	PRESENT VALUE	Present Value 5,000.00	
12000	FUTURE VALUE	Future Value 12,000.00	
	PAYMENT	Payment Amount 0.00 Number of Periods 12	

AVERAGE LIFE

The average life function calculates the average life and maturity date of a sinking fund issue. Average life calculations may be performed for Code 0 issues only.

Retirements may be annual or semi-annual, or a combination of both; the COUPON PER YEAR key is set before each group of sinkers is entered. Enter each group of sinkers in consecutive order, starting with the group with the earliest beginning retirement date. The number retired must always be entered before pressing the AVG LIFE key, the previous number is not retained (even if it is the same).

The beginning date for the group is entered on the CALLD ATE BEGIN key and the ending date is entered on the MAT DATE END KEY. The number of bonds for the sinker is then entered on the AVG LIFE key, completing the retirement for the group.

The dates are updated automatically, depending on the COUPONS PER YEAR key setting, to six or twelve months after the last ending date. (Assuming that the next group is contiguous and contains only one sinker.)

If the next group is contiguous but has more than one sinker, you must modify the ending date according to the number of sinkers with the same number of bonds per sinker.

Of course, if the next group is not contiguous, you must enter both the beginning and the ending dates.

ENTERY SEQUENCE FOR AVERAGE LIFE CA

Start the average life sequence by entering the quantity of bonds outstanding nt he BEGIN, AVG LIFE key.

FOR EACH GROUP ENTER
Beginning Date
Ending Date
Set the sinker frequently, if necessary
Quantity to be sunk each period

KEY PRESSED

CALL DATE BEGIN
MAT DATE END
COUPONS PER YEAR
AVG LIFE

Remember the contiguous beginning date is automatically computed and stored on the CALLD ATE BEGIN and MAT DATE END keys. Therefore, if the groups are contiguous, the beginning date need not be entered and if the group has only one sinker, the ending date also does not need to be entered.

Note: The beginning and ending dates may be verified at any time during the entry sequence by pressing DISPLAY < CALL DATE BEGIN and DISPLAY, MAT DATE END respectively. Compute Average Life by pressing DISPLAY, AVG LIFE and the average life in decimal years' displays. This also calculates the date of the average life and stores it on the MAT DATE END key. DISPLAY, MAT DATE END displays the date of average life which is stored.

Example: Calculate the average life and date of average life for the following issue:
Settlement date June 24, 1987
Coupon 6.5\%
Total bonds outstanding 6000
Final Maturity date March 1, 2009

GROUP	BEGINNING DATE	ENDING DATE	NUMBER RETIRED
1	September 1, 1994	September 1, 1999	80 Annually
2	September 1, 2000	September 1, 2000	40 Semi-Annually
3	March 1, 2002	September 1, 2005	80 Semi-Annually
4	March 1, 2006	September 1, 2008	95 Semi-Annually
ENTER	PRESS	RESULTS DISPLAYED	
0	CODE	Security code 0.	
6.2487	SETTLEMENT DATE	Settlement Date Wed. 06	

Set the FED/MUNI switch and status line as follows:

FED/MUNI SWITCH to MUNI
C=0 PER 30/360 ANNL 06-24-87 MATURITY

| ENTER | PRESS | RESULTS DISPLAYED |
| :--- | :--- | :--- | :--- |
| 6.5 | COUPON | Coupon Rate 6.500\% |
| 6000 | BEGIN,
 AVG
 LIFE | 6,000 Bonds Outstanding |
| | LIF | |

Goup 1

9.0194	CALL DATE BEGIN	Call Date Thur.	09-01-1994
9.0199	MAT DATE END	Maturity Date Wed. 09-01-1999	
80	AVG LIFE	5,520 Bonds Remaining	

ENTER PRESS RESULTS DISPLAYED

Group 2

DISPLAY,	Call Date Fri.	$09-01-2000$
CALL		
DATE		
BEGIN	Maturity Date Fri.	$09-01-2000$
DISPLAY,		
MAT		
DATE	Coupons/Year	2

2
To continue with this example, set status line as shown below.

ENTER
40
Group 3

CALL DATE BEGIN
9.0105

MAT DATE END

80 AVG LIFE

Group 4

RESULTS DISPLAYED

5,480 Bonds Remaining

PRESS
AVG LIFE

Group 3
Call Date Fri. 03-01-2000

Maturity Date Thur. 09-01-2005

4,840 Bonds Remaining

DISPLAY,
Call Dae Wed.
03-01-2996
CALL
DATE
BEGIN

ENTER	PRESS	RESULTS DISPLAYED	
9.0108	MAT DATE END	Maturity Date Mon. 09-01-2008	
95	AVG LIFE	4,270 Bonds Remaining	

The schedule is complete, enter the final maturity date (the remaining bonds are accumulated using the date) and calculate the average life in decimal years and the date of average maturity.

ENTER	PRESS	RESULTS DISPLAYED	
3.0109	MAT	Maturity Date 03-01-2009	
	DATE		
	END		
	DISPLAY	Avg Life 19.943 Years	06-02-2007
	AVG		
	LIFE		
	DISPLAY	Maturity Date Sat.	06-02-2007
	MAT		
	DATE		
	END		

Calculate the average yield to average life.

ENTER	PRESS	RESULTS DISPLAYED
80.7	TO	Yield $8.529 \%(M)$

AVERAGE LIFE CORRECTIONS

To correct data stored for a group before pressing the AVG LIFE key, reenter the correct value on the appropriate key.

Corrections for groups of bonds which have been entered using the AVG LIFE key can be made by entering the beginning and ending dates for the group in question, setting the COUPON PER YEAR key to the coupon payment frequency, keying in the number of bonds to be deleted or added and press the AVG LIFE key. After corrections are made, re-enter the final maturity date on MAT DATE END and recalculate the correct average life (DISPLAY, AVG LIFE).

Remember, calculating the average life changes the ending date (MAT DAT END key) to the date of the average maturity and subsequent depressions of DISPLAY, AVG life will compute incorrect results using the average maturity date as the end date.

BOND MEMORY

INTRODUCTION

The TRADER II has three security memory areas.

1) Working Memory is the area where security information is stored upon entry to perform all calculations. This memory can only hold one security description at a time. Each time you enter a security's coupon rate, maturity date, call feature, etc. you are describing the security to the TRADER II working memory. Once you have described a security to the TRADER II, it then can be stored in either bond memory of issue memory.
2) Bond Memory is a permanent storage area where up to 50 security descriptions can be stored. The TRADER II never disturbs this memory and you can recall any security to working memory at any time. Bond memory is battery supported and therefore retain any securities stored even when the TRADER II is powered off or while unplugged from electrical power and moved from location to location.

Use the STR BOND key to store a security into the bond memory are and DISPLAY, STR BOND to recall a security from bond memory back into working memory.
3) Issue Memory is volatile storage area to store the securities for production analysis total and averages. You must compute price or yield and extend the accrued interest before storing a security into issue memory. Up to 50 securities can be stored in this memory but unlike bond memory are not retained when the TRADER II is powered off.

Use the ADD ISSUE key to store a security into the issue memory area and DISPLAY, ADD ISSUE to recall a security from bond memory back into working memory.

STORING SECURITIES INTO BOND MEMORY

Adding a security to bond memory stores the security currently in working memory into a specific bond memory location according to the number ($1-50$) entered prior to pressing the key. Storing a bond in location 1 will erase any bond previously stored in location 1 but does not affect the bonds stored in locations 2 through 50.

ENTER	PRESS	RESULTS DISPLAYED
1	STR BVOND	Bond 1 Saved.

RECALLING SECURITIES FROM BOND MEMORY

Use the DISPLAY, STR BOND key to recall a security to working memory from a specific bond memory according to the number ($1-50$) entered prior to pressing the key. The status line (top line of the display) is updated to the status stored along with the security when saved previously, and the securities maturity date and coupon is displayed on the entry/result line (bottom line of the display).

ENTER PRESS RESULTS DISPLAYED

1
DISPLAY, STR
BOND

> C=0 PER 30/360 SEMI 06-24-87 MATURITY B(01) Maturity 06-02-07 Coupon 6.500

DELETING ONE SECURITY FROM BOND MEMORY

Use the STR, BOND key to delete (erase) a security from a specific bond memory location, according to the negative number $(1-50)$ entered prior to pressing the key. Only the security stored in then specified location is deleted.

C=0 PER 30/360 SEMI 06-24-87 MATURITY Bond 1 Deleted.

STORE/RECALL/DELETE ISSUE MEMORY

The key sequences used to "store into", "recall from" and "delete from" bond memory are the same as those used to access issue memory. Substituting the ADD ISSUE key in place of STR BOND in the above examples will access issue memory.

PRODUCTION ANALYSIS

Production analysis allows a group of bonds and other securities with varying interest rates, maturities, prices and yields, to be totaled and averaged, as in a portfolio, using the production function.

ENTRY SEQUENCE FOR PRODUCTION ANALYSIS

The securities are entered and calculated in the usual manner, except that all securities must have the same settlement date throughout the production. For accruing interest before the settlement date, enter the dated date on the ISSUE/DATED key for the applicable securities.

Start the production calculation by pressing the BEGIN, PROD keys. This sequence will clear issue memory.

Proceed with security calculations as needed, calculating price, yield, concession, and extension information for each individual issue.

Then, store the security in issue memory. As you proceed with the next group of securities, you needn't enter information, which has not changed since the last group, such as coupon, maturity or call feature. Remember to enter any applicable concession after each price or yield calculation.

When the last security has been stored, press DISPLAY, PROD to accumulate the securities stored in issue memory. The total par amount of all securities will be displayed. Then the production totals and averages may be displayed sequentially using the PROD key. Entering the sequence number and pressing the PROD key will directly display the corresponding summary.

The sequence number and associated production summary follows:

SEQ.\#		PRODUCATION SUMMARY	
0.		ComMENT	
1.	Bond Years		Dollar Amount
2.	Average Coupon		
3.	Average Interest	Weighted By Par	
4.	Total Coupon	Weighted By Par Years	
5.	Average Price	Coupon Interest For Life Of Bond	
6.	Total Extension	Weighted By Par	
7.	Total Principal	Extended Price Plus Accrued Interest	
8.	Average Redemption	Extended Price	
9.	Average Yield	Decimal Years and Date	
10.	Average Current Yield	Weighted By Par	
11.	Annual Income	Weighted By Par	
12.	Average Duration	Current Annual Coupon Interest	
13.	Total Accrued Interest	Weighted By Par	
14.	Gross Profit		

EXAMPLE: Perform a production analysis on the following series of bonds with semi-annual maturities. The settlement date is June 24, 1987 and interest is calculated from January 15, 1987.

| GROUP | BONDS | | MATURITY DATE | | COUPON | PRICE | YEILD |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | CONCESSION

Set the FED/MUNI switch and status line as follows:

FED/MUNI SWITCH TO MUNI

ENTER
6.2487
Group 1
1.1587
11.2597

MAT DATE END

7

8
.125
100
EXT
ADD ISSUE

C=0 PER 30/360 SEMI 06-24-87 MATURITY

RESULTS DISPLAYED
Issues Cleared. PROD

SETTLEMENT DATE

Settlement Date Wed. 06-24-1987

Iss/Dated Date Thur. 01-15-1987

Maturity Date Tue. 11-25-1997

Coupon Rate 7.000\%
Price 93.10 (M)

Price Less Conc 92.885
Prin 92,885.00 Int 3,091.67
Issue 1 Saved.

ENTER PRESS RESULTS DISPLAYED

Group 2

7.5	COUPON	Coupon Rate 7.500\%
8.25	TO PRICE	Price 94.814 (M)
50	EXT	Prin 47,407.00 Int 1,656.25
	ADD ISSUE	Issue 2 Saved

Group 3

7.75	COUPON	Coupon Rate 7.750\%	
11.2598	MAT DATE END	Maturity Date Wed.	11-25-1998
96	$\begin{aligned} & \text { TO } \\ & \text { YIELD } \end{aligned}$	Yield 8.297\% (M)	
. 25	CONC	Price Less Conc 95.75	
100	EXT	Prin 95,750.00 Int.	3,422.92
	ADD ISSUE	Issue 3 Saved.	

Group 4

3.2599	MAT DATE END	Maturity Date Thur.	03-25-1999
8	TO	Price 98.099 (M)	
125	PRICE		
	EXT	Prin 122,623.75 Int.	$4,278.65$
	ADD ISSUE	Issue 4 Saved.	

Adding issues is now complete, press the DISPLAY, PROD key to compute the averages and totals of the bonds. The first display is the Total Par Amount. Successive depressions of PROD will cause the numbers to increase from the current position to Total Profit (14), then return to Total Par Amount (0).

ENTER	PRESS	RESULTS DISPLAYED	
	$\begin{aligned} & \text { DISPLAY, } \\ & \text { PROD } \end{aligned}$	0. Total Par	375,000.00
	PROD	1. Bond Years	4339,538
	PROD	2. Avg Coupon	7.516667
	PROD	3. Avg Interest	7.531005
	PROD	4. Total Coupon	326,814.24
	PROD	5. Avg Price	95.644200
	PROD	6. Total Extension	371,115.24
	PROD	7. Total Principal	358,665.75
	PROD	8. Avg Redemption	11.131 Yrs 08-10-1998
	PROD	9. Avg Yield	8.112533
	PROD	10. Avg Current Yield	7.847821
	PROD	11. Annual Income	28,187.50
	PROD	12. Avg. Duration	7.561
	PROD	13. Accrued Interest	12,449.49
	PROD	14. Gross Profit	343,148.49

To access any result directly, enter the appropriate sequence number and press PROD. For example, to start from the $8^{\text {th }}$ summary (Average Redemption), enter and press PROD.

ENTER	PRESS		RESULTS DISPLAYED	
8	PROD	8. Avg Redemption		

Successive depressions of PROD will cause the numbers to increase from the current position for each summary until " 14 Total Profit" displays, then returns to "0" Total Par Amount".

ENTER	PRESS		RESULTS DISPLAYED		
	PROD	9. Avg Yield	8.112533		

PRODUCTION CORRECTIONS

Any security group can be deleted or added to manipulate the portfolio stored in issue memory. Refer to the Bond Memory Section for detailed examples. To correct erroneous input, recall the bond to working memory, make the necessary modification and restore the bond to issue memory. Remember, the production totals and averages will be re-computed using the security groups stored in issue memory each time memory each time DISPLAY, PROD key is pressed.

Changes can be made to issue memory using the following sequence.

1) Recall the incorrect security from issue memory to working memory.

ENTER	PRESS	RESULTS DISPLAYED
2	DISPLAY,	I(02) Maturity 11-25-97 Coupon 7.500
	ADD	

2) Complete the necessary change.

ENTER PRESS RESULTS DISPLAYED
$8.75 \quad$ TO \quad Price $91.556(\mathrm{M})$

25
EXT
Prin 22,889.00 Int. 828.13
3) Restore changed security to issue memory in the same location.

ENTER	PRESS	RESULTS DISPLAYED
2	ADD	Issue 2 Saved

4) Re-compute the production totals and averages.

ENTER PRESS RESULTS DISPLAYED
DISPLAY 0. Total Par 350,000.00
PROD
Production totals and averages may be displayed sequentially using the PROD key or by entering the sequence number and pressing the PROD key to display the corresponding summary directly.

ARITHMETIC

In addition to its securities calculation capabilities, TRADER II is a 14 digit, desktop display calculator. It operates in "algebraic logic", which means that all calculations are complete with the $=$ key. All arithmetic results are shown in floating decimal format.

THE EQUALS (=) KEY

This key is used in all calculations to generate the final result; you need not press C/CE to proceed with the next calculations, as the TRADER II is automatically ready for the next calculation upon the depression of the equals (=) key.

ADDITION

EXAMPLE: $\quad 123$ ॐ $456=579$

ENTER	PRESS	RESULTS DISPLAYED
123	§	123
456	$=$	579

EXAMPLE: $\quad 7$ 孔 8 ъ $9=24$

| ENTER | PRESS | RESULTS DISPLAYED |
| :--- | :--- | :--- | :--- |
| 7 | ¡ | 7 |
| 8 | ¡ | 8 |
| 9 | $=$ | 24 |

CONSTANT ADDITION

The first number entered may be retained as a constant for continued addition. The constant is saved until $\mathbf{C / C E}$ is depressed or a new constant is entered.

EXAMPLE: 2 § $10=12$

$$
2 \text { そ } 100=102
$$

$$
3 \text { § } 48=50
$$

ENTER	PRESS	RESULTS DISPLAYED
2	§	2
10	$=$	12
100	$=$	102
48	$=$	50

AUTOMATIC DOUBLING

Repeated consecutive depressions of \ddagger provides automatic doubling of the quantity.
EXAMPLE: $\quad 3$ む $\ddagger \ddagger=48$

ENTER	PRESS	RESULTS DISPLAYED
3	引	3
	§	6
	¢	12
	§	24
	=	48

SUBTRACTION

EXAMPLE: $\quad 123-456=333$
ENTER PRESS
RESULTS DISPLAYED

123
123
$456=-333$
EXAMPLE: $\quad 24-8-9=7$
ENTER PRESS RESULTS DISPLAYED

24
24
ENTER PRESS RESULTS DISPLAYED
8 - 16
$9 \quad=\quad 7$

CONSTANT SUBSTRACTION

The minuend may be retained as a constant for continued subtraction. The constant is saved until C/CE is depressed or a new constant is entered.

$$
\begin{array}{ll}
\text { EXAMPLE: } & 100-50=50 \\
& 100-25=75 \\
& 100-48=52
\end{array}
$$

ENTER	PRESS	RESULTS DISPLAYED
100	-	100
50	-	50
25	-	75
48	-	52

MULTIPLICATION

EXAMPLE: $\quad 123 \times 456=56088$

| ENTER | PRESS | RESULTS DISPLAYED |
| :--- | :--- | :--- | :--- |
| 123 | \times | 123 |
| 456 | $=$ | 56,088 |

EXAMPLE: $\quad 7 \times 8 \times 9=504$

ENTER	PRESS	RESULTS DISPLAYED
7	\times	7
8	\times	56
9	$=$	504

CONSTANT MULTIPLICATIONS

The first number (multiplicand) may be retained for continued multiplication. The constant is saved until C/CE is depressed or a new constant is entered.

EXAMPLE: $\quad 5 \times 6=30$
$5 \times 9=45$
$5 \times 2=10$
ENTER PRESS RESULTS DISPLAYED
5×5
$6=30$
$9 \quad=\quad 45$
$2=10$

AUTOMATIC SQUARING

Repeated consecutive depressions of \mathbf{x} squares the displayed quantity.

EXAMPLE: $\quad 2 \times \times \times=256$

ENTER	PRESS	RESULTS DISPLAYED
	\times	2
	\times	4
	\times	16
	$=$	256

RAISING NUMBERS TO INTEGRAL POWERS

Storing a constant multiplicand, followed by repeated consecutive depressions of $=$, provides a convenient way of raising a number to an integral power.

EXAMPLE: $\quad 2^{1}=2$
$2^{2}=4$
$2^{3}=8$
$2^{4}=16$
$2^{5}=32$

ENTER PRESS RESULTS DISPLAYED

2	\times	2
$=$	4	
$=$	8	
$=$	16	
$=$	32	

DIVISION

EXAMPLE: $\quad 456 \div 123=3.7073170731707$

ENTER	PRESS	RESULTS DISPLAYED
456	\div	456
123	$=$	37073170731707

EXAMPLE: $\quad 24$ ¡ 3 ¡ $2=4$

ENTER	PRESS	RESULTS DISPLAYED
24	\ddagger	24
3	\ddagger	8
2	$=$	4

CONSTANT DIVISION

The second number (divisor) may be retained for continued multiplication. The constant is saved until C/CE is depressed or a new constant is entered.

EXAMPLE: $\quad 100$ ¡ $2=50$
48 ¡ $2=24$

$$
9 \text { ¡ } 2=4.5
$$

ENTER	PRESS	RESULTS DISPLAYED
100	$?$	100
2	$=$	50
48	$=$	24
9	$=$	4.5

RECIPROCALS

The constant division feature can be used to calculate reciprocals.
EXAMPLE: Find 1/32

ENTER	PRESS	RESULTS DISPLAYED
32	ई	32
	$=$	1
	$=$.03125

MIXED CALCULATIONS

The arithmetic functions may be used in combination to solve mixed equations; intermediate results are displayed upon the depression of each function key.

EXAMPLE: $\quad 1$ ॐ $2 \times 4-5=2.75$

ENTER	PRESS	RESULTS DISPLAYED
1	\}	1.
2	\times	3.
3	\div	9.
4	-	2.25
5	=	-2.75

EXAMPLE: $\quad 5$ ¡ $3 \div 4 \times 12=24$
ENTER PRESS
RESULTS DISPLAYED
5
§

3
\div
8.

4
\times
$12=$
24.

APPENDIX A ERROR CONDITIONS

Invalid Code
Settlement Date Required
Invalid Date
Issue Date Required
Dated Date > Settlement Date
Issue Date $>$ Settlement Date
Setl Date $>$ Mat Date
Setl Date $>$ Call Date
Setl Date $>$ Conv. Date
Conv. Date $>$ Mat Date
Call Date $>$ Mat Date
Call Price Required
Coupon Rate Required

Invalid Coupons/Year

Coe 0 or 1 only

Compute Price/Yield First

Divide by 0
Bond Numbers 1 to 50 only
Bond \mathbf{N} has not been stored

Issue Numbers 1 to 50 only
Issue \mathbf{N} has not been stored

Security Code must be a number zero through six.
Settlement date has not be entered.
A non-existent date or not in proper format.
Attempting a calculation requiring an Issue date (Security Code 2, 3 or 4), or the $1^{\text {st }}$ coupon date is greater than settlement date.

Date date is greater than Settlement date.
Issue date is greater than Settlement date.
Settlement date is greater than Maturity date.
Settlement date is greater than Call date.
Settlement date is greater then Conv. date.
Conv. Date is greater than Maturity date.
Call date is greater than Maturity date.
Call price has not been entered for a calculation to call.
Present Value, Future Value, Payment and number of period calculations require an interest rate to be entered on the COUPON rate key.

This entry must be a whole number, no fractional part, greater than zero and less than 366.

The key pressed will not perform it's function for Codes other than Coide 0 or 1 .

This message will display when a function requires the Price or Yield for the currently entered security. For example, if the coupon rate has been changed, pressing the DUR key will cause this message to display.

Attempting a division by zero.
Bond memory number must be a number 1 through 50.
Attempting to recall a Bond from bond memory which was not previously stored.
bone memory number must be a number 1 through 50 .
Attempting to recall a Bond from bond memory whish was not previously stored.

APPENDIX B LIST OF SECURITIES

	Pricing/ Interest Classificaiton	Day Count Basis	Code
U.S. TREASUREY ISSUES::			
Certificates of Indebetedness	At Maturity	Actual/365	4
U.S. Treasury Bills	Discount	Actual/360	5
U.S. Treasury Tax-Anticipation Bills (TABS)	Discount	Actual/360	5
U.S. Treasury Bonds	Periodic	Actual/Actual	1
U.S. Treasury Notes	Periodic	Actual/Actual	1
FEDERAL AGENCY ISSUES:			
Commodity Credit Corporation (CCC's)	Periodic	30/360	0
Export-Import Bank Participation Certificates	Periodic	30/360	0
Farmers Home Administration Insured Notes	Periodic	Actual/Actual	1
Federal Home Loan Bank (FHLB) Notes \& Bonds	Periodic	30/360	0
Federal Housing Administration (FHA) Debentures	Periodic	Acutal	1
Federal Intermediate Credit Bank (FICB)	At Maturity;	30/360	0
Debentures	Periodic	30/360	2
Federal Land Bank (FLB) Bonds	Periodic	30/360	0
Federal National Mortgage Association (FNMA) Debentures	Periodic	30/360	0
FNMA Short Term Notes	Discount	Actual/360	5
General National Mortgage Association (GNMA) Bonds and Participation Certificates	Periodic	30/360	0
U.S. Postal Service Bonds	Periodic	30/360	0
Tennessee Valley Authority (TVA) Bonds	Periodic	30/360	0
TVA Notes	Discount	Actual/360	5
Merchant Marine Bonds	Periodic	30/360	0

	Pricing/ Interest Classificaiton	Day Count Basis
STATE AND LOCAL GOVERNMENT ISSUES:		Code
Tax Supported Bonds	Periodic	$30 / 360$
Revenue Supported Bonds	Periodic	$30 / 360$
Assessment Supported Bonds	Periodic	$30 / 360$
Special Supported Bonds	Periodic	$30 / 360$

